If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying -6x4 + 48x2 + -32 = 0 Reorder the terms: -32 + 48x2 + -6x4 = 0 Solving -32 + 48x2 + -6x4 = 0 Solving for variable 'x'. Factor out the Greatest Common Factor (GCF), '2'. 2(-16 + 24x2 + -3x4) = 0 Ignore the factor 2.Subproblem 1
Set the factor '(-16 + 24x2 + -3x4)' equal to zero and attempt to solve: Simplifying -16 + 24x2 + -3x4 = 0 Solving -16 + 24x2 + -3x4 = 0 Begin completing the square. Divide all terms by -3 the coefficient of the squared term: Divide each side by '-3'. 5.333333333 + -8x2 + x4 = 0 Move the constant term to the right: Add '-5.333333333' to each side of the equation. 5.333333333 + -8x2 + -5.333333333 + x4 = 0 + -5.333333333 Reorder the terms: 5.333333333 + -5.333333333 + -8x2 + x4 = 0 + -5.333333333 Combine like terms: 5.333333333 + -5.333333333 = 0.000000000 0.000000000 + -8x2 + x4 = 0 + -5.333333333 -8x2 + x4 = 0 + -5.333333333 Combine like terms: 0 + -5.333333333 = -5.333333333 -8x2 + x4 = -5.333333333 The x term is -8x2. Take half its coefficient (-4). Square it (16) and add it to both sides. Add '16' to each side of the equation. -8x2 + 16 + x4 = -5.333333333 + 16 Reorder the terms: 16 + -8x2 + x4 = -5.333333333 + 16 Combine like terms: -5.333333333 + 16 = 10.666666667 16 + -8x2 + x4 = 10.666666667 Factor a perfect square on the left side: (x2 + -4)(x2 + -4) = 10.666666667 Calculate the square root of the right side: 3.265986324 Break this problem into two subproblems by setting (x2 + -4) equal to 3.265986324 and -3.265986324.Subproblem 1
x2 + -4 = 3.265986324 Simplifying x2 + -4 = 3.265986324 Reorder the terms: -4 + x2 = 3.265986324 Solving -4 + x2 = 3.265986324 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '4' to each side of the equation. -4 + 4 + x2 = 3.265986324 + 4 Combine like terms: -4 + 4 = 0 0 + x2 = 3.265986324 + 4 x2 = 3.265986324 + 4 Combine like terms: 3.265986324 + 4 = 7.265986324 x2 = 7.265986324 Simplifying x2 = 7.265986324 Take the square root of each side: x = {-2.695549355, 2.695549355}Subproblem 2
x2 + -4 = -3.265986324 Simplifying x2 + -4 = -3.265986324 Reorder the terms: -4 + x2 = -3.265986324 Solving -4 + x2 = -3.265986324 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '4' to each side of the equation. -4 + 4 + x2 = -3.265986324 + 4 Combine like terms: -4 + 4 = 0 0 + x2 = -3.265986324 + 4 x2 = -3.265986324 + 4 Combine like terms: -3.265986324 + 4 = 0.734013676 x2 = 0.734013676 Simplifying x2 = 0.734013676 Take the square root of each side: x = {-0.856745981, 0.856745981}Solution
The solution to the problem is based on the solutions from the subproblems. x = {-2.695549355, 2.695549355, -0.856745981, 0.856745981}Solution
x = {-2.695549355, 2.695549355, -0.856745981, 0.856745981}
| x^3+3x^2+9x= | | 4(x^2-5x+7)-8(x^2+4x-5)= | | -y+4+3y= | | 3a=8m+18 | | 4n+8-2n=0 | | 3(k-2)=-5 | | 9.5=1.4d-3.1 | | 4n+-2n=0 | | x-12/10=x-6/7 | | -8(2c+20)=2(-6c-10)+6c | | x^2+13x+15=2x+5 | | 5+5lnx=3 | | y=16+-1x^2 | | 81x^2-7=57 | | (-7)(2j-27)=49j | | -20-6k=-8(6k-16)+20 | | (p^2)-(2p)+6=2 | | x^2+30x+100=70x-x^2 | | 5(i+4)=15i | | 3(-6m+10)=2(-10m+17) | | z+8z+12=15 | | (-1/4t^3u^9)^4 | | 5(3y+10)-4y=17 | | 9z+12=15 | | 6(-5+11y)=3(6y+6) | | 3(4-3h)=-6 | | 3x+8-7(x+1)=-(6x-6) | | 4f-17=-3-3f | | 6(-3s-20)=6-11s | | 15y-4x=-33 | | 3-4e=27-e | | -9(-d+16)=-3+6(8d+9) |